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Abstract. The Heisenberg spin-S quantum antiferromagnet is studied near the large-spin limit, applying a
new continuous unitary transformation which extends the usual Bogoliubov transformation to higher order
in the 1/S-expansion of the Hamiltonian. This allows to diagonalize the bosonic Hamiltonian resulting
from the Holstein-Primakoff representation beyond the conventional spin-wave approximation. The zero-
temperature flow equations derived from the extension of the Bogoliubov transformation to order O(1/S2)
for the ground-state energy, the spin-wave velocity, and the staggered magnetization are solved exactly
and yield results which are in agreement with those obtained by a perturbative treatment of the magnon
interactions.

PACS. 75.10.Jm Quantized spin models – 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

The quantum Heisenberg model with antiferromagnetic
coupling of neighboring spins on a lattice is one of the
most fundamental models in the theory of magnetism. Be-
sides its basic and longstanding role for the theoretical
understanding of magnetic quantum systems, it has also
gained renewed interest in the description of the undoped
cuprates, where low dimensionality and small spin quan-
tum number cause an enhanced importance of quantum
fluctuations. A quite clear physical picture for the low-
temperature phase diagram of the Heisenberg quantum
antiferromagnet has emerged from a variety of methods
[1], including spin-wave theory, Schwinger boson mean-
field theory, renormalization-group calculations and vari-
ous numerical and perturbative techniques.

Generally, a standard approach in the study of low-
temperature magnetic systems [2] is spin-wave theory [3],
which assumes magnetic ordering in the ground-state and
applies an expansion of the spin interaction around the
classical limit of large spin quantum number S, utilizing
a spin-boson transformation. In the leading order of 1/S,
the resulting Hamiltonian is then bilinear in the boson
operators and can be diagonalized by a usual Bogoliubov
transformation eliminating terms which do not conserve
the number of particles. In this approximative approach,
which already yields quite good results for a number of
physical quantities even in the S = 1/2 case [4], higher-
order interaction terms representing scattering of spin-
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waves may be included in the analysis only perturbatively
[5]. Such a treatment of the magnon interactions is per-
formed in extended spin-wave theory, where the contribu-
tions to the bosonic Hamiltonian in next-to-leading order
of 1/S are considered in first-order perturbation theory
after the Bogoliubov transformation has been applied.

It is thus a natural question to ask whether one can
devise an extended transformation which diagonalizes the
bosonic Hamiltonian also in higher orders of the inverse
spin. Although this is hardly feasible for a “single-step”
transformation, a continuous transformation of the Hamil-
tonian with this desired property is much easier to con-
struct. The method of continuous unitary transformations
has been formulated originally by Wegner [6] and indepen-
dently also by G lazek and Wilson [7]. It has been success-
fully applied to a variety of physical problems, including
the Anderson impurity Hamiltonian [8], the spin-boson
model of quantum dissipation [9], systems with electron-
phonon interactions [10], the strong-coupling Hubbard
Hamiltonian [11], and the low-dimensional n-orbital model
[12], often yielding new and surprising results and clari-
fying problems of other approaches. On the other hand,
the antiferromagnetic Heisenberg model near the classical
limit also provides an instructive example how the 1/S-
expansion imposes a peculiar linear structure on the flow
equations derived for the couplings of the Hamiltonian and
makes their solutions perfectly controlled by a systematic
parameter.

In the present work a new continuous unitary trans-
formation is applied to the large-S Heisenberg anti-
ferromagnet in the Holstein-Primakoff representation.
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This allows to go beyond conventional spin-wave theory
and to diagonalize the resulting bosonic Hamiltonian also
in higher orders of 1/S, removing interactions which con-
nect subspaces with a different number of spin excitations.
Near the classical limit the inverse of the spin is small and
may thus serve as a systematic expansion parameter. Due
to this classification of the spin interactions in terms of
1/S, the resulting flow equations derived from the con-
tinuous transformation are closed, and exact results for
a number of physical quantities can be obtained. To be
more precise, for every order of the 1/S-expanded Hamil-
tonian one obtains an inhomogeneous system of linear dif-
ferential equations involving the coupling functions of that
particular order, while the inhomogeneous contributions
exclusively result from the transformation and normal or-
dering of terms in other orders. We present results with
the diagonalization being performed to order O(1/S2). In
contrast to the usual (leading order) Bogoliubov transfor-
mation, up to this order the proposed novel continuous
transformation does not generate new types of nondiago-
nal interaction terms which were not present in the origi-
nal Hamiltonian. The second-order flow equations for the
ground-state energy, the spin-wave velocity, and the stag-
gered magnetization are derived and solved exactly for
the zero-temperature case. Although the continuous trans-
formation is not based on perturbation theory around
the leading-order magnon Hamiltonian, the corresponding
results are in agreement with those obtained by the per-
turbative approach of extended spin-wave theory.

2 The flow equations

We consider the spin-S Heisenberg quantum antiferromag-
net

H = J
∑
〈i,j〉

Si · Sj , (1)

where the sum 〈i, j〉 is over all bonds of a general bipartite
lattice with N sites and sublattices A and B, with i ∈ A
and j ∈ B. To be more specific, in the following we will
always consider the special case of a simple cubic lattice
with z = 2d nearest neighbors, lattice spacing a, and the

lattice dispersion γq =
1

d

d∑
l=1

cos qla, although most of the

results obtained below are also valid for a more general
bipartite lattice. The case of dimensionality d = 2, i.e.
the square lattice, will be of special interest. To study this
quantum model (1) near the classical limit where S � 1,
we adopt the Holstein-Primakoff boson representation [13]
of spin operators on the two sublattices,

Szi =S − ni S+
i =

√
2S − ni ai S−i =a†i

√
2S − ni

Szj =−S + nj S+
j =b†j

√
2S − nj S−j =

√
2S − nj bj ,

(2)

where the ai and bj are local Bose operators. Inserting
these expressions in (1) and expanding the square roots
results in an expansion of the Hamiltonian in powers of
the inverse spin,

H(`) = E0(`) +∆

∞∑
k=1

: Hk(`) :

Sk
, (3)

where ∆ = zJS2 sets the energy scale of the problem. Due
to the continuous transformation which is applied to the
Hamiltonian, H(`) = U(`)HU†(`), the couplings depend
on the non-negative flow parameter `. The interaction con-
tributions : Hk : are written in normal-ordered form and
the normal ordering : . . . : is initially performed with re-
spect to the classical vacuum |0〉, with ai|0〉 = bj|0〉 = 0.
Since the classical vacuum is mapped to the (approxi-
mate) quantum ground state in the course of the trans-
formation flow, generally (i.e. for ` > 0) normal ordering
is with respect to the actual transformed ground state
|0`〉, which incorporates quantum fluctuations to some or-
der of 1/S. We use the convention that the interaction
terms of the Hamiltonian (3) are assigned to that Hk

in which they appear at lowest order in k. As a conse-
quence, the couplings of the interactions will in general
also have contributions which are of higher order in 1/S
and which originate from normal ordering of higher-order
interaction terms. The normal ordering also ensures that
〈0`| : Hk(`) : |0`〉 = 0 and thus 〈0`|H(`)|0`〉 = E0(`). The
initial value E0(0) = −N∆/2 of the ground-state energy
corresponds to the classical Néel ground-state.

The transformation flow of the Hamiltonian is then
described by the differential equation [6]

d

d`
H(`) = [η(`),H(`)], (4)

where the antihermitean flow generator η(`) is also ex-
panded in powers of 1/S,

η(`) =
dU(`)

d`
U†(`) =

∞∑
k=0

ηk(`)

Sk
· (5)

Instead of the canonical form of the generator of the trans-
formation, given by the commutator of the diagonal and
nondiagonal parts of the Hamiltonian [6], the ηk(`) em-
ployed here are somewhat simpler. At kth order of the
1/S-expansion, the corresponding ηk(`) is chosen as the
nondiagonal contribution to the Hamiltonian at that or-
der, albeit brought in antihermitean form. Thus, ηk(`)
is simply given by the difference of the terms in Hk(`)
which raise and lower the number of particles by two, re-
spectively. An analogous form for the generator has also
been proposed for the block-diagonalizing strong-coupling
transformation of the Hubbard model [11], and for the
diagonalization of general band matrices [14].

It is also worth noting that utilizing the Dyson-Maleev
[15] instead of the Holstein-Primakoff spin-boson trans-
formation eventually generates the same types of interac-
tion terms. However, due to the non-hermiteicity of the
operators involved in the Dyson-Maleev representation,
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in higher orders the resulting flow equations are less sym-
metric and the Holstein-Primakoff transformation appears
to be more suitable to the problem.

2.1 Linear spin-wave theory

To recover the results of linear spin-wave theory, only
terms up to order O(1/S) are retained in the 1/S-
expansion of the Hamiltonian (3),

H1(`)=
∑
q

(
fq(`)

(
a†qaq+b†qbq

)
+gq(`)

(
a†qb
†
−q+aqb−q

))
,

(6)

where one initially has fq(0) = 1 and gq(0) = γq. This
leading correction beyond the classical contribution is bi-
linear in the boson operators and may be diagonalized
directly in a single step by a conventional Bogoliubov
rotation. However, since we are finally aiming at a diag-
onalization at order O(1/S2) which requires some results
of the continuous transformation in the leading order, we
will present here a continuous version of the Bogoliubov
transformation. In order O(1/S) the “single-step” and the
continuous version yield the same final results for the
transformed bosonic Hamiltonian.

In the framework of the continuous transformation the
terms in (6) which do not conserve the number of spin
excitations are eliminated by choosing

η0(`) =
1

2

∑
q

gq(`)
(
a†qb
†
−q − aqb−q

)
, (7)

resulting in the leading-order flow equation

d

d`
H1(`) = [η0(`),H1(`)]. (8)

The differential equations which describe the transforma-
tion of the coupling functions of (6) are then given by

d

d`
fq(`) = −g2

q(`)
d

d`
gq(`) = −fq(`) gq(`). (9)

The quantum corrections to the ground-state energy give
rise to the flow of E0(`),

d

d`
E0(`) = −

∆

S

∑
q

g2
q(`). (10)

Introducing the bare spin-wave dispersion εq = (1−γ2
q )1/2,

one finds that f2
q (`) − g2

q(`) = ε2q is an invariant of the
transformation flow. This invariant immediately suggests
the hyperbolic parametrization which is usually employed
in the Bogoliubov transformation. The solutions of (9) are
thus readily obtained

fq(`)=εq coth(`εq+`0(q)) gq(`)=
εqsgnγq

sinh(`εq+`0(q))
,

(11)

with the initial values correctly reproduced by

`0(q) =
1

2
ln

1 + εq

1− εq
· (12)

Since `0(q) ≥ 0, the fq(`) and gq(`) are continuous and
monotonically decreasing functions in the whole range
` ≥ 0. When H1(0) is already diagonal, i.e. γq = 0, the
transformation does not give anything new, since then
fq(`) ≡ 1 and gq(`) ≡ 0. Generally, the asymptotic be-
havior for `→∞ is governed by exponential convergence
to the values fq(∞) = εq and gq(∞) = 0. In the degener-
ate case when εq = 0, one finds a weaker algebraic decay
of the coupling functions,

fq(`) = ± gq(`) =
1

`+ 1
for γq = ± 1. (13)

Therefore, the choice (7) for the generator of the trans-
formation also ensures the elimination of bosonic spin
excitations which are degenerate with the quantum
ground-state.

2.2 The spin-wave interactions

Expanding the Hamiltonian (3) to next higher order in
1/S yields additional two-particle interactions of the spin-
wave excitations,

H2(`) = −
2

N

∑
q,q1,q2

(
hq,q1,q2(`)a†q+q1aq1b

†
−q+q2bq2

+ ξq,q1,q2(`)
(
a†q+q1a

†
−q+q2aq1aq2 + b†q+q1b

†
−q+q2bq1bq2

)
+

1

4
ζq,q1,q2(`)

(
a†q+q1+q2aq1aq2bq + a†q1a

†
q2aq+q1+q2b

†
q

+ aqb
†
q+q1+q2bq1bq2 + a†qb

†
q1
b†q2bq+q1+q2

))
. (14)

The interaction terms related to hq,q1,q2 and ξq,q1,q2 in-
volve t-channel scattering of magnons with initial mo-
menta q1 and q2 and momentum transfer q, while ζq,q1,q2
describes the creation or annihilation of spin excitations
with total momentum q+ q1 + q2. Only the contributions
given by the couplings hq,q1,q2 and ζq,q1,q2 are initially
present in the bosonized Heisenberg Hamiltonian. Accord-
ingly, the coupling functions of the interaction terms (14)
obey the initial conditions hq,q1,q2(0) = ζq,q1,q2(0) = γq
and ξq,q1,q2(0) = 0. One also finds the invariance proper-
ties

hq,q1,q2(`) = h−q,q2,q1(`), ξq,q1,q2(`) = ξ−q,q2,q1(`),

and ζq,q1,q2(`) = ζq,q2,q1(`) (15)

which are related to permutation symmetry, whereas her-
miteicity of the Hamiltonian enforces the additional sym-
metry relations

hq,q1,q2(`) = h−q,q+q1,−q+q2(`),

ξq,q1,q2(`) = ξ−q,q+q1,−q+q2(`). (16)
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At this point, usual spin-wave theory does not involve
any further transformation of the interactive part of the
Hamiltonian which is beyond the linear Bogoliubov trans-
formation considered in the preceding section. As a con-
sequence, in H2(`) nondiagonal terms are not removed.
Correspondingly, the flow of H2(`), as completely de-
scribed by the generator η0(`) only, does not eventually
lead to a particle-conserving expression. However, the in-
teraction terms which connect subspaces with a different
number of spin excitations can be transformed away by
an extension of the continuous generator. Choosing

η1(`) =
1

4N

∑
q,q1,q2

ζq,q1,q2(`)
(
a†q+q1+q2aq1aq2bq

+ aqb
†
q+q1+q2bq1bq2 − a

†
q1a
†
q2aq+q1+q2b

†
q

− a†qb
†
q1b
†
q2bq+q1+q2

)
, (17)

at second order in 1/S the flow equation for the Hamilto-
nian reads

d

d`
H2(`) = [η0(`),H2(`)] + [η1(`),H1(`)]. (18)

The transformation (18) does not generate new types of
nondiagonal interaction terms in the Hamiltonian, in con-
trast to the usual linear Bogoliubov transformation which
at order O(1/S2) leads to new interactions of the form
(aabb + a†a†b†b†) (cf. (25) below). This is due to a can-
cellation of the corresponding contributions in (18), which
does not occur without the term related to η1(`). More-
over, it seems to be peculiar for the specific choice of the
generator, since also in related work [11,14] it was ob-
served that an analogous type of transformation is able to
avoid the population of initially empty off-diagonals.

As a consequence of normal ordering, the coupling
functions appearing in H1(`) acquire a O(1/S) correction,

f̃q(`) = fq(`) + 1
S
f

(1)
q (`) and g̃q(`) = gq(`) + 1

S
g

(1)
q (`). The

corresponding second-order flow equations then read

d

d`
f̃q(`)=−g̃2

q(`)+
1

S

∫
Q

gQ(`)ζ−Q,Q,q(`) (19)

and

d

d`
g̃q(`)=−f̃q(`) g̃q(`)+

1

2S

∫
Q

gQ(`)hQ−q,q,−q(`), (20)

where momentum integration
∫
Q

extends over the entire

Brillouin zone of the lattice. The coupling functions of
H2(`) with general momenta are determined by the equa-
tions

d

d`
hq,q1,q2(`) = −

1

2

(
gq1(`) ζq+q1,−q+q2,−q1(`)

+ gq2(`) ζ−q+q2,q+q1,−q2(`)

+ gq+q1(`) ζq1,q2,−q−q1(`)

+ gq−q2(`) ζq2,q1,q−q2(`)
)
, (21)

d

d`
ξq,q1,q2(`) = −

1

8

(
gq1(`) ζ−q1,q+q1,−q+q2(`)

+ gq2(`) ζ−q2,−q+q2,q+q1(`)

+ gq+q1(`) ζ−q−q1,q1,q2(`)

+ gq−q2(`) ζq−q2,q2,q1(`)
)
, (22)

d

d`
ζq,q1,q2(`) =

1

2
ζq,q1,q2(`)(fq+q1+q2(`)−fq(`)−fq1(`)−fq2(`))

− gq1(`)hq+q1,q2,q(`)− gq2(`)hq+q2,q1,q(`)

− 2gq(`)(ξq+q1,q2,q1(`) + ξq+q2,q1,q2(`)). (23)

The energetic stability of the spin-wave excitations,
εq1+q2 ≤ εq1 + εq2 , ensures that ζq,q1,q2(`) decays expo-
nentially in the asymptotic limit ` → ∞, apart from
the highly degenerate situation when at least two mo-
menta involved in the interaction vanish. Also the func-
tions hq,q1,q2(`) and ξq,q1,q2(`) converge exponentially fast
to their asymptotic values in this regime.

This system of coupled linear differential equations
(21–23) is substantially simplified, if one considers only
those coupling functions with momenta entering into the
O(1/S) corrections of fq(`) and gq(`). The reason for this,
which will become more clear in the next section, is that
only these coupling functions contribute to the ground-
state properties in which we are eventually interested.
Introducing ϑ0,q,Q(`) = h0,−q,Q(`) + 4ξ0,q,Q(`), one thus
obtains

d

d`

 ζ−q,q,Q(`)
ζ−Q,Q,q(`)
ϑ0,q,Q(`)

hQ−q,q,−q(`)

 =

−

 fq(`) 0 gq(`) gQ(`)
0 fQ(`) gQ(`) gq(`)

2gq(`) 2gQ(`) 0 0
gQ(`) gq(`) 0 0


 ζ−q,q,Q(`)

ζ−Q,Q,q(`)
ϑ0,q,Q(`)

hQ−q,q,−q(`)

 . (24)

Unfortunately, the eigenvectors of the matrix in (24) are `-
dependent, so that this system of differential equations is
not easily solved. Let us therefore first consider the some-
what simpler situation when only the linear spin-wave
transformation is employed. Thus, without the elimina-
tion of the nondiagonal terms at order O(1/S2) as per-
formed by the introduction of η1(`), the corresponding
flow equations for H2(`) are determined completely by the
first commutator in (18), while the second one does not
contribute. One then obtains a modified expression for the
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second-order Hamiltonian,

H ′2(`) = −
2

N

∑
q,q1,q2

(
kq,q1,q2(`)a†q+q1aq1b

†
−q+q2bq2

+ xq,q1,q2(`)
(
a†q+q1a

†
−q+q2aq1aq2 + b†q+q1b

†
−q+q2bq1bq2

)
+

1

4
zq,q1,q2(`)(a†q+q1+q2aq1aq2bq + a†q1a

†
q2
aq+q1+q2b

†
q

+ aqb
†
q+q1+q2bq1bq2 + a†qb

†
q1b
†
q2bq+q1+q2)

+ yq,q1,q2(`)(aq1aq2bqb−q−q1−q2+a†q1a
†
q2
b†qb
†
−q−q1−q2)

)
.

(25)

Besides the terms related to kq,q1,q2 , xq,q1,q2 , and zq,q1,q2 ,
which are already present due to the extended transforma-
tion (17), the linear Bogoliubov transformation generates
additional nondiagonal spin-wave interactions with cou-
pling yq,q1,q2 . Therefore, one has the new initial conditions
kq,q1,q2(0) = zq,q1,q2(0) = γq and xq,q1,q2(0) = yq,q1,q2(0) =
0. As above, the determination of the ground state prop-
erties again requires only a partial knowledge of the com-
plete set of flow equations for the coupling functions in
(25). One introduces t0,q,Q(`) = k0,−q,Q(`) + 4x0,q,Q(`)
and rQ−q,q,−q(`) = kQ−q,q,−q(`) + 4y−q,q,Q(`) to arrive at
the system of linear differential equations

d

d`

 z−q,q,Q(`)
z−Q,Q,q(`)
t0,q,Q(`)

rQ−q,q,−q(`)

 =

−

 0 0 gq(`) gQ(`)
0 0 gQ(`) gq(`)

gq(`) gQ(`) 0 0
gQ(`) gq(`) 0 0


 z−q,q,Q(`)

z−Q,Q,q(`)
t0,q,Q(`)

rQ−q,q,−q(`)

 . (26)

Although the second-order Hamiltonian (25) resulting
from the linear Bogoliubov transformation is more com-
plicated in structure than the one which is derived in
presence of η1(`), the corresponding system of flow equa-
tions (26) is simpler and can be solved easily. Noting that
t0,q,Q(0) = 1 and rQ−q,q,−q(0) = γQ−q, one finds that
the solutions are most conveniently written in terms of
the functions Fq(`) and Gq(`) which are introduced below
and are explicitly given in (54). Thus,

z−q,q,Q(`) = γqFq(`)FQ(`) + γQGq(`)GQ(`)

+ FQ(`)Gq(`) + γQ−qFq(`)GQ(`)

t0,q,Q(`) = γqGq(`)FQ(`) + γQGQ(`)Fq(`)

+ Fq(`)FQ(`) + γQ−qGq(`)GQ(`)

rQ−q,q,−q(`) = γqFq(`)GQ(`) + γQFQ(`)Gq(`)

+Gq(`)GQ(`) + γQ−qFq(`)FQ(`). (27)

From these solutions of the coupling functions the values
for the transformed interactions in the linear spin-wave

approximation are finally given by

z−q,q,Q(∞) =
γQ

εqεQ

(
γqγQ − γQ−q

)
k0,q,Q(∞) =

1

2
+

1

2εqεQ

(
ε2q + ε2Q − 1 + γqγQγQ−q

)
kQ−q,q,−q(∞) =

γQ−q

2
−

1

2εqεQ

(
γqγQ − γQ−q

)
(28)

x0,q,Q(∞) = −
1

8
+

1

8εqεQ

(
ε2q + ε2Q − 1 + γqγQγQ−q

)
y−q,q,Q(∞) = −

γQ−q

8
−

1

8εqεQ

(
γqγQ − γQ−q

)
.

The terms related to k0,q,Q and x0,q,Q = xQ−q,q,Q corre-
spond to and are in agreement with the diagonal inter-
actions included in the second-order Hamiltonian derived
from extended spin-wave theory.

Having solved the flow equations (26) for the purely
linear transformation, one may now proceed to (24) and
treat the terms which are different in these two systems of
coupled differential equations as inhomogenities of (26). In
this way, some additional information is available which
is sufficient to determine the ground-state energy and the
one-particle excitation spectrum. As will turn out in the
next section, the solutions of the homogeneous system
(26) are also fundamental for solving the flow equations
of the second-order contributions to the occupation num-
ber of the Holstein-Primakoff bosons (cf. (59) below). As
a feature of the solutions which is most important for the
determination of ground-state properties, one finds that
the functions ϑ0,q,Q(`) and t0,q,Q(`) converge to the same
value in the asymptotic limit of the transformation,

ϑ0,q,Q(∞) = t0,q,Q(∞)

=
1

εqεQ

(
ε2q + ε2Q − 1 + γqγQγQ−q

)
, (29)

and ∫
Q

ϑ0,q,Q(∞) = εq

∫
Q

εQ. (30)

Furthermore, one obtains results for some of the trans-
formed diagonal couplings of the second-order Hamilto-
nian,

ζ−q,q,Q(∞) = 0

ξ0,q,Q(∞) = x0,q,Q(∞)

ξQ−q,q,Q(∞) = x0,q,Q(∞) (31)

h0,q,Q(∞) = k0,q,Q(∞).
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3 Ground-state properties and one-particle
excitations

To extract the physical properties of the quantum ground-
state and the one-particle excitation spectrum from the
flow equations presented in the preceding section, one first
notes that (19) and (20) at order O(1/S) result in the
equations

d

d`

(
f

(1)
q (`)

g
(1)
q (`)

)
= −

(
0 2gq(`)

gq(`) fq(`)

)(
f

(1)
q (`)

g
(1)
q (`)

)

+

(
b1;q(`)
b2;q(`)

)
, (32)

with initial conditions f
(1)
q (0) = g

(1)
q (0) = 0 and where the

inhomogeneous contribution to this system of differential
equations is given by

b1;q(`) =

∫
Q

gQ(`)ζ−Q,Q,q(`),

b2;q(`) =
1

2

∫
Q

gQ(`)hQ−q,q,−q(`). (33)

The integral basis for the homogeneous part of (32) con-
sists of the two independent solutions(

g2
q(`)

fq(`) gq(`)

)
and

(
fq(`)− ` g2

q(`)
gq(`)− ` fq(`) gq(`)

)
. (34)

Utilizing these expressions (34) and including the inho-
mogenities of (32), one derives the asymptotic values

g(1)
q (∞) = 0

and

f (1)
q (∞) =

1

εq

∫ ∞
0

d`
(
fq(`) b1;q(`)− gq(`) b2;q(`)

)
. (35)

Inserting here (33) and using (24), this yields the result

f (1)
q (∞) =

1

2

(
εq −

∫
Q

ϑ0,q,Q(∞)
)
, (36)

which directly enters into the calculations for the ground-
state energy and the spin-wave velocity.

3.1 Ground-state energy

Classifying also the contributions to the ground-state en-
ergy according to their power in the inverse spin,

E0(`) =
∞∑
k=0

E
(k)
0 (`)

Sk
, (37)

from the result (10) of linear spin-wave theory one finds
the flow equation for the leading-order quantum correc-
tion,

d

d`
E

(1)
0 (`) = −∆

∑
q

g2
q(`), (38)

with the solution

E
(1)
0 (`) = −

N∆

2

(
1−

∫
q

fq(`)
)
. (39)

With the numerical result for the d = 2 simple cubic lat-
tice ∫

q

εq ' 0.842053, (40)

the O(1/S) ground-state energy of the S = 1/2 square
lattice Heisenberg antiferromagnet is given by E0 '
−0.6579J . Also the second-order correction of E0 is en-
tirely encapsulated in (10), since there are no further con-
tributions to the flow equation for the ground-state energy
arising from contractions of the magnon interaction terms.

Including g
(1)
q (`), one thus obtains

d

d`
E

(2)
0 (`) = −2∆

∑
q

gq(`) g
(1)
q (`). (41)

With the integral∫ ∞
0

d` gq(`) g
(1)
q (`) =

−
1

2εq

∫ ∞
0

d`
(
(fq(`)− εq) b1;q(`)− gq(`) b2;q(`)

)
(42)

and (24), this equation is solved by

E
(2)
0 (∞) = −

N∆

8

(
1−

∫
q

∫
Q

ϑ0,q,Q(∞)− 4

∫
q

f (1)
q (∞)

)
= −

N∆

8

(
1−

∫
q

εq

)2

, (43)

where we have made use of (30, 36). With the numer-
ical result (40), the total ground-state energy per site
of the square-lattice Heisenberg antiferromagnet at order
O(1/S2) is then finally given,

E0 =−2JS2
(
1+0.15795/S+0.00623/S2+O(1/S3)

)
.

(44)

For S = 1/2, one recovers the result of extended spin-wave
theory, E0 = −0.6704 J .

3.2 Spin-wave velocity

From the diagonalized one-particle Hamiltonian (6) one
can read off the excitation spectrum and the leading-order
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magnon dispersion ωq(∞) = 2dJSεq, which is linear for
low momenta and is related to the spin-wave velocity, c =
ωq/q in the limit q → 0. One thus obtains the bare value

c0 = 2
√
d JSa, in agreement with the standard linear spin-

wave approximation. To obtain the quantum correction to
the spin-wave velocity, one notes that

ωq(`) = 2dJS
(
fq(`) +

1

S
f (1)
q (`)

)
. (45)

Using (30) and the result (36) for f
(1)
q (∞), this yields

ωq(∞) = 2dJSεq

(
1 +

1

2S

∫
Q

(1− εQ)

)
. (46)

Together with (40), the enhancement of the spin-wave ve-
locity by quantum fluctuations is then given by the factor
Zc = c/c0 ' 1.15795 in the S = 1/2 case, which again is in
agreement with the result of extended spin-wave theory.

3.3 Staggered magnetization

The magnetic order in the ground-state of the Heisenberg
antiferromagnet leads to a nonvanishing zero-temperature
staggered or mean sublattice magnetization

m†=
1

N

∑
i∈A

〈Szi 〉 −
∑
j∈B

〈Szj 〉

=S
(
1−

1

2

∫
q

n(0)
q (∞)

)
,

(47)

where n
(0)
q (`) represents the ground-state occupation of

the Holstein-Primakoff bosons, with n
(0)
q (0) = 0 corre-

sponding to the classical value. The total occupation num-
ber is again expressed by a series containing the quantum
contributions,

n(`) =
∞∑
k=0

∑
q

: n
(k)
q (`) :

Sk
, (48)

where the leading bilinear term is given by

n(1)
q (`)=Fq(`)

(
a†qaq+b†qbq

)
+Gq(`)

(
a†qb
†
−q+aqb−q

)
, (49)

with the initial values Fq(0) = 1 and Gq(0) = 0. In close
analogy to the form of H ′2(`) in (25), the second-order
contribution to the number operator reads

n(2)
q (`) = −

2

N

∑
q1,q2

(
Hq,q1,q2(`)a†q+q1aq1b

†
−q+q2bq2

+Xq,q1,q2(`)
(
a†q+q1a

†
−q+q2aq1aq2 + b†q+q1b

†
−q+q2bq1bq2

)
+

1

4
Zq,q1,q2(`)

(
a†q+q1+q2aq1aq2bq + a†q1a

†
q2aq+q1+q2b

†
q

+ aqb
†
q+q1+q2bq1bq2 + a†qb

†
q1
b†q2bq+q1+q2

)
+ Yq,q1,q2(`)

(
aq1aq2bqb−q−q1−q2 +a†q1a

†
q2b
†
qb
†
−q−q1−q2

))
.

(50)

In contrast to the O(1/S2) contribution to the Hamilto-
nian, however, the two-particle terms of (50) are initially
not present in n(0), so that Hq,q1,q2(0) = Xq,q1,q2(0) =
Zq,q1,q2(0) = Yq,q1,q2(0) = 0. Of course, these terms are
due to η1(`) and are not generated in the linear spin-wave
approximation.

The transformation of the total bosonic occupation
number is described by the flow equation

d

d`
n(`) = [η(`), n(`)], (51)

which for the terms linear in 1/S encapsulates

d

d`
n(1)
q (`) = [η0(`), n(1)

q (`)]. (52)

This leads to the differential equations

d

d`
Fq(`) = −gq(`)Gq(`)

d

d`
Gq(`) = −gq(`)Fq(`)

d

d`
n(0)
q (`) = −

1

S
gq(`)Gq(`). (53)

With the results (11), one obtains the solutions for the
couplings

Fq(`) =
1

ε2q

(
fq(`)− γq gq(`)

)
Gq(`) =

1

ε2q

(
gq(`)− γq fq(`)

)
(54)

and for the ground-state occupation number

n(0)
q (`) =

1

S

(
Fq(`)− 1

)
. (55)

Inserted in (47), this expression together with the square-
lattice result ∫

q

1

εq
' 1.393 (56)

yields the linear spin-wave value for the sublattice mag-
netization

m† = S

(
1−

1

2S

∫
q

(ε−1
q − 1)

)
. (57)

Thus, for S = 1/2 one has the well-known result
m† ' 0.303.

Extending the transformation of n(`) to order
O(1/S2), the flow of the interaction contributions to the
total bosonic occupation number is described by

d

d`
n(2)
q (`) = [η0(`), n(2)

q (`)] + [η1(`), n(1)
q (`)], (58)
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which results in the system of coupled differential equa-
tions

d

d`

 Z−q,q,Q(`)
Z−Q,Q,q(`)
T0,q,Q(`)
Rq,Q(`)

 = −

 0 0 gq(`) gQ(`)
0 0 gQ(`) gq(`)

gq(`) gQ(`) 0 0
gQ(`) gq(`) 0 0



×

 Z−q,q,Q(`)
Z−Q,Q,q(`)
T0,q,Q(`)
Rq,Q(`)

−
C1;q,Q(`)
C1;Q,q(`)
C2;q,Q(`)

0


(59)

where again only those couplings have been kept which
enter into the calculation of the ground-state occupation.
Furthermore, we have introduced T0,q,Q(`) = H0,−q,Q(`)+
4X0,q,Q(`) and Rq,Q(`) = HQ−q,q,−q(`)+4Y−q,q,Q(`). The
inhomogeneous contributions in (59) read

C1;q,Q(`) = Fq(`)ζ−q,q,Q(`)

and

C2;q,Q(`) = Gq(`)ζ−q,q,Q(`) +GQ(`)ζ−Q,Q,q(`). (60)

Naturally, if only the linear spin-wave transformation is
applied, in the flow equation (58) the second commutator
does not contribute and the inhomogeneous part of (59)
vanishes, so that all the coupling functions are identically

zero. To determine the higher-order contribution to n
(0)
q ,

first one has to evaluate the O(1/S) corrections of the
coupling functions in the bilinear contributions (49) to
the total magnon occupation number. For the couplings

F̃q(`) = Fq(`) + 1
S
F

(1)
q (`) and G̃q(`) = Gq(`) + 1

S
G

(1)
q (`)

one finds

d

d`

(
F

(1)
q (`)

G
(1)
q (`)

)
= −

(
0 gq(`)

gq(`) 0

)(
F

(1)
q (`)

G
(1)
q (`)

)

+

(
B1;q(`)
B2;q(`)

)
, (61)

with the initial conditions F
(1)
q (0) = G

(1)
q (0) = 0 and the

inhomogenities

B1;q(`) = −g(1)
q (`)Gq(`) +

1

2

∫
Q

GQ(`)ζ−Q,Q,q(`)

+
1

2

∫
Q

gQ(`)Z−Q,Q,q(`),

B2;q(`) = −g(1)
q (`)Fq(`) +

1

2

∫
Q

gQ(`)Rq,Q(`). (62)

From the integral basis of (61),(
fq(`)
gq(`)

)
and

(
gq(`)
fq(`)

)
, (63)

and from the equations (59) one now extracts

F (1)
q (∞) =

1

εq

∫ ∞
0

d`
(
fq(`) B1;q(`)− gq(`) B2;q(`)

)
= −

1

2

∫
Q

T0,q,Q(∞), (64)

where the latter equality is based on a useful integral re-
lation derived from (32) for the second-order nondiagonal
interactions,∫ ∞

0

d`

(
g(1)
q (`) +

1

2

∫
Q

ζ−q,q,Q(`)

)
= 0. (65)

The total contribution to n
(0)
q is then given by

d

d`
n(0)
q (`) =

−
1

S
gq(`)Gq(`)−

1

S2

(
g(1)
q (`)Gq(`) + gq(`)G

(1)
q (`)

)
.

(66)

With the result (64), and using (59, 61), the ground-state
occupation of the Holstein-Primakoff bosons is finally de-
rived∫

q

n(0)
q (∞)=

1

S

∫
q

(
Fq(∞)−1

)
−

1

4S2

∫
q

∫
Q

T0,q,Q(∞).

(67)

Thus, the second-order correction to the staggered mag-
netization is completely encapsulated in the coupling
T0,q,Q(∞). While for the transformation linear in 1/S one
has trivially T0,q,Q(`) ≡ 0, from (59) follows

T0,q,Q(∞) =

1

εqεQ

∫ ∞
0

d`
(
γq fQ(`)ζ−q,q,Q(`) + γQ fq(`)ζ−Q,Q,q(`)

)
.

(68)

This expression can be evaluated exactly, since from (24)
and (26) one derives∫ ∞

0

d` fQ(`)ζ−q,q,Q(`) =
εQ

εq
z−q,q,Q(∞), (69)

which finally yields for the transformed coupling

T0,q,Q(∞) =
γqγQ

ε3qε
3
Q

(
ε2q + ε2Q

)(
γqγQ − γQ−q

)
. (70)

Therefore, one has
∫
q

∫
Q
T0,q,Q(∞) = 0, so that the lin-

ear spin-wave result (57) remains unchanged at order
O(1/S2).
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4 Summary and conclusions

In this work a new continuous unitary transformation
has been applied to the Heisenberg antiferromagnet,
utilizing the Holstein-Primakoff representation near the
large-spin limit. This continuous approach to devising a
unitary transformation allows to exceed conventional spin-
wave theory and to diagonalize the spin-boson trans-
formed magnon Hamiltonian also in higher orders of 1/S.
Removing those two-particle interactions of spin-wave ex-
citations which do not conserve the number of magnons,
one arrives at a Hamiltonian diagonal to order O(1/S2).
The flow equations for the second-order quantum correc-
tions of the ground-state energy, of the spin-wave veloc-
ity, and of the sublattice magnetization have been derived
and solved exactly. Although non-perturbative in nature,
the continuous transformation yields results which are in
agreement with extended spin-wave theory with its per-
turbative treatment of magnon interactions around the
leading-order Hamiltonian. This agreement of both ap-
proaches in second order of 1/S appears to be a conse-
quence of the systematic expansion in the inverse spin
which leads to a complete classification of the contribu-
tions to physical quantities.

However, the method of continuous transformations
has certain conceptual advantages compared to extended
spin-wave theory. With the appropriate choice of the
generator which has been used in this work, it is possible
to avoid the occurrence of new types of interaction terms
in the higher-order contributions to the Hamiltonian.
These new types of interactions destroy the block-
tridiagonal structure of the original bosonized Heisenberg
Hamiltonian. They are not generated in the continuously
transformed model, but inevitably appear, if the usual
linear Bogoliubov transformation is performed. Thus, the
flow equation approach ensures that block-tridiagonality
of the Hamiltonian is preserved to all orders in the 1/S-
expansion. It therefore reduces the number of terms to be
handled in higher orders. Additionally, it allows to obtain
explicitly the operator expressions for observables beyond
the leading order treated in spin-wave theory, and not only

the corresponding expectation values. In principle, this is
also true for the explicit result for the quantum ground-
state, involving the higher corrections to the Néel state.
This, however, would require the complete solutions of the
coupling functions, i.e. the solutions for general momenta.

The author wishes to thank F. Wegner for valuable discussions.
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